

Equivariant Kazhdan–Lusztig theory of paving matroids

by Trevor K. Karn (U. Minnesota) (joint with George Nasr, Nick Proudfoot, and Lorenzo Vecchi) on Monday, November 28, 2022 A classical story

ihow me the matroids!

Main result

A classical story

Show me the matroids!

Main result

A classical story

A partition $\lambda \vdash n$ is a weakly decreasing sequence of nonnegative integers $\lambda_1 \geq \lambda_2 \geq \cdots$ summing to *n*.

A Young tableau T is a filling of a Ferrers diagram by positive integers. T is standard if it is filled by $\{1, 2, ..., n\}$ and increasing in rows and columns. Define f_{λ} as the number of standard tableaux of shape λ .

Proof 1: The <u>Robinson-Schensted bijection</u>:

pairs of standard tableaux of same shape \longleftrightarrow symmetric group \mathfrak{S}_n

Fact

Irreducible \mathfrak{S}_n representations are indexed by $\lambda \vdash n$ and have dimension f_{λ} .

Fact

Let d_1, d_2, \ldots, d_r be the dimensions of the irreducible complex representations of a finite group. Then

$$\sum_{i} d_i^2 = |G|.$$

Proof 2:

$$\sum_{\lambda} f_{\lambda}^2 = \sum_i d_i^2 = |G| = |\mathfrak{S}_n| = n!$$

Definition 1

A matroid $M = (E, \mathcal{I})$ is a set E with $\mathcal{I} \subseteq 2^{E}$ such that

If $I \in \mathcal{I}$ then all subsets of I are in \mathcal{I} , and

If $I_1, I_2 \in \mathcal{I}$ and $|I_1| = |I_2| + 1$, there exists $x \in I_1 - I_2$ such that $I_2 \cup x \in \mathcal{I}$

Elements of \mathcal{I} are **independent sets**. The **bases** of M are the inclusion-maximal elements of \mathcal{I} . The set of all bases is \mathcal{B} .

A matroid M = (E, C) is a set E with $C \subseteq 2^E$ such that $\emptyset \not\in \mathcal{C}$ If $C_1, C_2 \in C$ are distinct, and $e \in C_1 \cap C_2$, then there is a $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) - e$

Elements of C are **circuits**. A circuit of M is an minimal set which is not in \mathcal{I} .

Example

The **uniform matroid** $U_{k,n}$ models *n*-many vectors in \mathbb{R}^{k} in general position

Bases \longleftrightarrow any set of *k*-many vectors

Circuits \longleftrightarrow any set of k + 1-many vectors

Main result

Example

A graph Γ with edges *E* forms a matroid:

 $\mathsf{Bases}\longleftrightarrow\mathsf{spanning}\mathsf{trees}$

Circuits \longleftrightarrow cycles

Main result

Example

The columns of a matrix form a matroid:

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 2 & 4 \end{bmatrix}$$

Show me the matroids! ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙

The combinatorial model for a subspace is a flat

The flats of a matroid form a ranked lattice. The rank of the matroid is then defined to be the rank of the lattice. A rank-k-1 flat is called a **hyperplane**. If a hyperplane $H \in C$, then it is called a **circuit hyperplane**.

Let x, y be elements of a poset. Define the Möbius function

$$\mu(x,y) := egin{cases} 1 & x = y \ -\sum_{x \leq z < y} \mu(x,z) & ext{otherwise} \end{cases}$$

Let M be a rank-k matroid with lattice of flats L(M)

$$\chi_{M}(t) := \sum_{F \in L(M)} \mu(\overline{\emptyset}, F) t^{k-r(F)}$$

A matroid *M* on groundset *E*, has Orlik–Solomon algebra $\mathcal{OS}(M)$, a certain quotient of the exterior algebra $\bigwedge E$

Theorem (Orlik, Solomon '80)

 $\chi_{M}(t)$ determines the Poincaré polynomial of $\mathcal{OS}(M)$

Definition/Theorem (Elias, Proudfoot, Wakefield '16)

Fix *M*. There is a unique polynomial $P_M(t)$ satisfying: $P_M(t) = 1$ if r(M) = 0,

 $\deg P_M(t) < r(M)/2 \text{ when } r(M) > 0,$

$$t^{r(M)}P_M(t^{-1}) = \sum_{F \in L(M)} P_{M_F}(t)\chi_{M^F}(t).$$

 $P_M(t)$ is the matroid Kazhdan–Lusztig polynomia

Main result

Conjecture (Elias, Proudfoot, Wakefield '16)

 $P_M(t)$ has positive coefficients

Theorem (Lee, Nasr, Radcliffe '21)

Conjecture true for sparse paving matroids

Theorem (Braden, Huh, Matherne, Proudfoot, Wang '20) Conjecture true for any *M*

M is a paving matroid if all circuits have size at least k = r(M)

A paving matroid is sparse if the set CH of circuit hyperplanes satisfies $\binom{E}{k} = CH \sqcup B$

Conjecture (Mayhew, Newman, Welsh, Whittle '11)

Asymptotically almost all matroids are sparse paving

Theorem (Pendavingh, van der Pol '15)

Asymptotically logarithmically almost all matroids are sparse paving

Theorem (Lee, Nasr, Radcliffe '21)

Let *M* be rank-*k*, sparse paving, on a groundset of size *n*, with circuit hyperplanes CH. The t^i coefficient in $P_M(t)$ is

$\mathsf{SSkYT}(n-k+1, i, k-2i+1) - |\mathcal{CH}| \cdot \overline{\mathsf{SSkYT}}(i, k-2i+1)$

Proof idea: Combinatorial argument with recursion.

SSkYT(a, i, b) = #standard fillings of

$\overline{\text{SSkYT}}(i, b) = \text{#standard fillings of}$

Lee, Nasr, and Radcliffe combinatorially prove an identity involving Kazhdan-Lusztig polynomials and standard fillings of skew Young tableaux.

Fact

Standard skew Young tableaux count the dimension of certain (reducible) \mathfrak{S}_n representations

Question

Is there representation theory lurking?

Main result

K., Nasr, Proudfoot, Vecchi '22

YES!

Main result

Let W be a group. An <u>equivariant matroid</u> $W \curvearrowright M$ is a matroid with a W-action such that $gl \in \mathcal{I}$ for all $g \in W$ and $l \in \mathcal{I}$.

The action of W induces an action on $\mathcal{OS}(M)$. The <u>equivariant</u> characteristic polynomial of $W \curvearrowright M$ is a graded virtual representation $\chi_M^W(t)$. The coefficient of t^{k-i} is determined by $\mathcal{OS}(M)_i$.

Definition/Theorem (Gedeon, Proudfoot, Young '17) Let $W \curvearrowright M$ be an equivariant matroid, W_F denote the stabilizer of F. Then there exists $P_M^W(t)$ satisfying If r(M) = 0, then $P_M^W(t)$ is $\mathbb{1}_W t^0$

If r(M) > 0, then deg $P_M^W(t) < r(M)/2$

$$t^{\prime(M)}P^W_M(t^{-1}) = \sum_{[F] \in L(M)/W} \operatorname{Ind}_{W_F}^W\left(P^{W_F}_{M_F}(t) \otimes \chi^{W_F}_{M^F}\right)$$

 $\varphi: W' o W$ a homom. then $P_M^{W'}(t) = \varphi^* P_M^W(t)$

A classical story

ihow me the matroids!

Main result

$$t'^{(M)} P_M(t^{-1}) = \sum_{F \in L(M)} P_{M_F}(t) \chi_{M^F}(t)$$

 and

Compare:

$$t^{r(M)} P^W_M(t^{-1}) = \sum_{[F] \in L(M)/W} \operatorname{Ind}_{W_F}^W \left(P^{W_F}_{M_F}(t) \otimes \chi^{W_F}_{M^F} \right).$$

Main result

A stressed hyperplane *H* of a rank-*k* matroid M = (E, B) has every *k*-subset a circuit.

Theorem (Ferroni, Nasr, Vecchi '21)

The operation of relaxation at a stressed hyperplane H forms a new matroid $\tilde{M} = (E, \tilde{B})$ with bases

 $\ddot{\mathcal{B}} = \mathcal{B} \sqcup \{S \subseteq H : |S| = k\}.$

A classical story

Main result

A classical story

Show me the matroids!

Main result

Theorem (Ferroni, Nasr, Vecchi '21)

There exists a polynomial $p_{k,h}$ such that

$$P_M(t) = P_{\tilde{M}}(t) - p_{k,h}$$

Theorem (Ferroni, Nasr, Vecchi '21)

If *M* is a paving matroid with |E| = n and has exactly λ_h -many stressed hyperplanes of size *h*, then

$$P_M(t) = P_{U_{k,n}}(t) - \sum_{h \ge k} \lambda_h \cdot p_{k,h}.$$

A classical story

Show me the matroids! 0000000000000000000 Main result

» Idea of the proof

Let $W \curvearrowright M$ be an equivariant matroid with stressed hyperplane H.

Let $W \curvearrowright \widetilde{M}$ denote the equivariant matroid found by simultaneously relaxing all hyperplanes in [H].

Theorem (K.-Nasr-Proudfoot-Vecchi '22)

There exists an equivariant polynomial $p_{kh}^{\mathfrak{S}_h}$ such that

$$P^W_M(t) = P^W_{\widetilde{M}}(t) - {
m Ind}^W_{W_H} {
m Res}^{\mathfrak{S}_h}_{W_H} p^{\mathfrak{S}_h}_{k,h}$$

Theorem (K.-Nasr-Proudfoot-Vecchi '22)

The coefficients of t^i are

$$\{t^i\}p_{k,h}^{\mathfrak{S}_h}=S^{\mu_i/\lambda_i}$$

where $\mu_i, \lambda_i \vdash h$ are: $\mu_i = h - 2i + 1, (k - 2i + 1)^i$ and $\lambda_i = k - 2i, (k - 2i - 1)^{i-1}$ A classical story

how me the matroids!

Main result

The coefficient of t^i in $p_{k,h}^{\mathfrak{S}_h}$ is

which has dimension equal to the number of standard fillings

» Idea of proof

how me the matroids!

 $\mathsf{Relax} \ U_{k-1,h}^{\mathfrak{S}_h} \oplus U_{1,1} \text{ to } U_{k,h+1}^{\mathfrak{S}_{h+1}}.$

 $p_{k,h}^{\mathfrak{S}_h}$ depends only on k, h, so one example is enough.

A series of relaxations can be performed to a sparse paving matroid to obtain the uniform matroid. In other words:

$$P^W_M(t) = P^W_{U_{k,n}}(t) - \sum_{[H] \in \mathcal{CH}} \operatorname{Ind}_{W_H}^W \operatorname{Res}_{W_H}^{\mathfrak{S}_h} p_{k,h}^{\mathfrak{S}_h}$$

Theorem (Gao, Xie, Yang '21)

Every coefficient of t^i in $P_{U_{k,n}}^{\mathfrak{S}_n}(t)$ is given by the skew shape:

Main result

For sparse paving matroids, h = k. This provides representation theoretic proof of the Lee–Nasr–Radcliffe formula!

Main result

Main result

THANK YOU!

» References

- Ben Elias, Nicholas Proudfoot, and Max Wakefield, <u>The Kazhdan–Lusztig polynomial of a matroid</u>, Advances in Mathematics **299** (2016), 36–70.
- Luisa Ferroni, George D. Nasr, and Lorenzo Vecchi, <u>Stressed</u> hyperplanes and Kazhdan–Lusztig gamma-positivity for <u>matroids</u>, 2021.
- Katie R. Gedeon, Nicholas Proudfoot, and Benjamin Young, <u>The equivariant Kazhdan–Lusztig polynomial of a matroid</u>, J. Comb. Theory, Ser. A **150** (2017), 267–294.
- Alice L. L. Gao and Matthew H. Y. Xie, <u>The inverse</u> Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. B **151** (2021), 375–392. MR 4294228

Main result

» References (cont.)

- Alice L. L. Gao, Matthew H.Y. Xie, and Arthur L. B. Yang, <u>The equivariant inverse Kazhdan–Lusztig polynomials of</u> <u>uniform matroids</u>, 2021.
- Trevor Karn, George Nasr, Nicholas Proudfoot, and Lorenzo Vecchi, Equivariant Kazhdan-Lusztig theory of paving matroids, 2022.
- Kyungyong Lee, George D. Nasr, and Jamie Radcliffe, <u>A</u> combinatorial formula for Kazhdan–Lusztig polynomials of sparse paving matroids, Electron. J. Comb. **28** (2021).
- Dillon Mayhew, Mike Newman, Dominic Welsh, and Geoff Whittle, <u>On the asymptotic proportion of connected matroids</u>, European J. Combin. **32** (2011), no. 6, 882–890. MR 2821559

» References (cont.)

- Peter Orlik and Louis Solomon, <u>Combinatorics and topology of complements of hyperplanes</u>, Inventiones mathematicae **56** (1980), no. 2, 167–189 (eng).
- Rudi Pendavingh and Jorn van der Pol, <u>On the number of matroids compared to the number of sparse paving matroids</u>, Electron. J. Combin. **22** (2015), no. 2, Paper 2.51, 17. MR 3367294
- Nicholas Proudfoot, Yuan Xu, and Benjamin Young, <u>The</u> <u>Z-polynomial of a matroid</u>, Electron. J. Comb. **25** (2018), P1.26.