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A partition λ ⊢ n is a weakly decreasing sequence of nonnegative
integers λ1 ≥ λ2 ≥ · · · summing to n.

Example

λ = (5, 4, 4, 2, 1) ⊢ 16 has Ferrers diagram
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A Young tableau T is a filling of a Ferrers diagram by positive
integers. T is standard if it is filled by {1, 2, . . . , n} and increasing
in rows and columns. Define fλ as the number of standard
tableaux of shape λ.

Example

One of f(5,4,4,2,1) = 549120 standard Young tableaux:

1 6 10 13 16

2 7 11 14

3 8 12 15

4 9

5
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Fact
Fix n. Then ∑

λ⊢n
f 2λ = n!

Proof 1:
The Robinson-Schensted bijection:

pairs of standard tableaux of same shape←→ symmetric group Sn
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Fact
Irreducible Sn representations are indexed by λ ⊢ n and
have dimension fλ.

Fact
Let d1, d2, . . . , dr be the dimensions of the irreducible
complex representations of a finite group. Then∑

i
d 2

i = |G|.
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Fact
Fix n. Then ∑

λ⊢n
f 2λ = n!

Proof 2: ∑
λ

f 2λ =
∑

i
d 2

i = |G| = |Sn| = n!
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Combinatorial identity with standard Young tableaux

Combinatorial proof Algebraic proof
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Definition 1

A matroid M = (E, I) is a set E with I ⊆ 2E such that

If I ∈ I then all subsets of I are in I, and

If I1, I2 ∈ I and |I1| = |I2|+ 1, there exists
x ∈ I1 − I2 such that I2 ∪ x ∈ I

Elements of I are independent sets. The bases of M
are the inclusion-maximal elements of I. The set of all
bases is B.
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Definition 2

A matroid M = (E, C) is a set E with C ⊆ 2E such that

∅ ̸∈ C

If C1,C2 ∈ C with C1 ⊆ C2, then C1 = C2.

If C1,C2 ∈ C are distinct, and e ∈ C1 ∩ C2, then
there is a C3 ∈ C such that C3 ⊆ (C1 ∪ C2)− e

Elements of C are circuits. A circuit of M is an minimal
set which is not in I.
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Example

The uniform matroid Uk,n models n-many vectors in Rk

in general position

Bases ←→ any set of k-many vectors

Circuits ←→ any set of k + 1-many vectors
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Example

A graph Γ with edges E forms a matroid:

Bases ←→ spanning trees

Circuits ←→ cycles

C1

C2

C3 e
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Example

The columns of a matrix form a matroid:[
1 2 0 0
2 4 2 4

]
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The combinatorial model for a subspace is a flat

The flats of a matroid form a ranked lattice. The rank of the
matroid is then defined to be the rank of the lattice. A rank-k− 1
flat is called a hyperplane. If a hyperplane H ∈ C, then it is called
a circuit hyperplane.
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Let x, y be elements of a poset. Define the Möbius function

µ(x, y) :=
{
1 x = y
−
∑

x≤z<y µ(x, z) otherwise

Let M be a rank-k matroid with lattice of flats L(M)

χM(t) :=
∑

F∈L(M)

µ(∅,F )t k−r (F )
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A matroid M on groundset E, has Orlik–Solomon algebra OS(M),
a certain quotient of the exterior algebra

∧
E

Theorem (Orlik, Solomon ’80)

χM(t) determines the Poincaré polynomial of OS(M)
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Definition/Theorem (Elias, Proudfoot, Wakefield ’16)

Fix M. There is a unique polynomial PM(t) satisfying:
PM(t) = 1 if r(M) = 0,

deg PM(t) < r(M)/2 when r(M) > 0,

tr(M)PM(t−1) =
∑

F∈L(M)

PMF(t)χMF(t).

PM(t) is the matroid Kazhdan–Lusztig polynomial
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MF and MF
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Conjecture (Elias, Proudfoot, Wakefield ’16)

PM(t) has positive coefficients

Theorem (Lee, Nasr, Radcliffe ’21)

Conjecture true for sparse paving matroids

Theorem (Braden, Huh, Matherne, Proudfoot, Wang ’20)

Conjecture true for any M

[19/45]



A classical story Show me the matroids! Main result

M is a paving matroid if all circuits have size at least k = r(M)

A paving matroid is sparse if the set CH of circuit hyperplanes
satisfies

(E
k
)
= CH ⊔ B

Conjecture (Mayhew, Newman, Welsh, Whittle ’11)

Asymptotically almost all matroids are sparse paving

Theorem (Pendavingh, van der Pol ’15)

Asymptotically logarithmically almost all matroids are
sparse paving
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Theorem (Lee, Nasr, Radcliffe ’21)

Let M be rank-k, sparse paving, on a groundset of size n,
with circuit hyperplanes CH. The ti coefficient in PM(t)
is

SSkYT(n− k + 1, i, k− 2i + 1)− |CH| · SSkYT(i, k− 2i + 1)

Proof idea: Combinatorial argument with recursion.
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SSkYT(a, i, b) = #standard fillings of
a

b

i

SSkYT(i, b) = #standard fillings of
b

i+ 1
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Lee, Nasr, and Radcliffe combinatorially prove an identity involving
Kazhdan-Lusztig polynomials and standard fillings of skew Young
tableaux.
Fact

Standard skew Young tableaux count the dimension of
certain (reducible) Sn representations

Question
Is there representation theory lurking?
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K., Nasr, Proudfoot, Vecchi ’22

YES!
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Let W be a group. An equivariant matroid W ↷ M is a matroid
with a W-action such that gI ∈ I for all g ∈W and I ∈ I.

The action of W induces an action on OS(M). The equivariant
characteristic polynomial of W ↷ M is a graded virtual
representation χW

M(t). The coefficient of tk−i is determined by
OS(M)i.

χW
M(t) χM(t)“dimension”
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Definition/Theorem (Gedeon, Proudfoot, Young ’17)

Let W ↷ M be an equivariant matroid, WF denote the
stabilizer of F. Then there exists PW

M(t) satisfying
If r(M) = 0, then PW

M(t) is 1Wt0

If r(M) > 0, then deg PW
M(t) < r(M)/2

tr(M)PW
M(t−1) =

∑
[F]∈L(M)/W

IndW
WF

(
PWF

MF
(t)⊗ χWF

MF

)
φ : W ′ →W a homom. then PW ′

M (t) = φ∗PW
M(t)
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Compare:
tr(M)PM(t−1) =

∑
F∈L(M)

PMF(t)χMF(t)

and

tr(M)PW
M(t−1) =

∑
[F]∈L(M)/W

IndW
WF

(
PWF

MF
(t)⊗ χWF

MF

)
.

PW
M(t) PM(t)dimension
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» Relaxation

A stressed hyperplane H of a rank-k matroid M = (E,B) has every
k-subset a circuit.
Theorem (Ferroni, Nasr, Vecchi ’21)

The operation of relaxation at a stressed hyperplane H
forms a new matroid M̃ = (E, B̃) with bases

B̃ = B ⊔ {S ⊆ H : |S| = k}.
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Theorem (Ferroni, Nasr, Vecchi ’21)

There exists a polynomial pk,h such that

PM(t) = PM̃(t)− pk,h

Theorem (Ferroni, Nasr, Vecchi ’21)

If M is a paving matroid with |E| = n and has exactly
λh-many stressed hyperplanes of size h, then

PM(t) = PUk,n(t)−
∑
h≥k

λh · pk,h.
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» Idea of the proof
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Let W ↷ M be an equivariant matroid with stressed hyperplane H.

Let W ↷ M̃ denote the equivariant matroid found by
simultaneously relaxing all hyperplanes in [H].

Theorem (K.-Nasr-Proudfoot-Vecchi ’22)

There exists an equivariant polynomial pSh
k,h such that

PW
M(t) = PW

M̃(t)− IndW
WH ResSh

WH
pSh

k,h
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Theorem (K.-Nasr-Proudfoot-Vecchi ’22)

The coefficients of ti are

{ti}pSh
k,h = S µi/λi

where µi, λi ⊢ h are:
µi = h− 2i + 1, (k− 2i + 1)i and
λi = k− 2i, (k− 2i− 1)i−1
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The coefficient of ti in pSh
k,h is

h− k + 1

i

k − 2i+ 1

which has dimension equal to the number of standard fillings
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» Idea of proof

Relax USh
k−1,h ⊕ U1,1 to USh+1

k,h+1.

pSh
k,h depends only on k, h, so one example is enough.
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A series of relaxations can be performed to a sparse paving matroid
to obtain the uniform matroid. In other words:

PW
M(t) = PW

Uk,n(t)−
∑

[H]∈CH

IndW
WH ResSh

WH
pSh

k,h
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Theorem (Gao, Xie, Yang ’21)

Every coefficient of ti in PSn
Uk,n

(t) is given by the skew
shape:

n− k + 1

i

k − 2i+ 1
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For sparse paving matroids, h = k. This provides representation
theoretic proof of the Lee–Nasr–Radcliffe formula!

k − 2i+ 1

i+ 1

n− k + 1

k − 2i+ 1

i

i+ 1

k − 2i+ 1

n− k + 1

i

k − 2i+ 1
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∑
λ

f 2λ = n!

Combinatorial proof Algebraic proof
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PM(t) in terms of standard skew Young tableaux

Combinatorial proof [LNR21] Algebraic proof [KNPV22]
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THANK YOU!
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