

00000000000000000000

Equivariant Kazhdan–Lusztig theory of paving matroids

by Trevor K. Karn (U. Minnesota) (joint with George Nasr, Nick Proudfoot, and Lorenzo Vecchi) on Monday, November 28, 2022

[A classical story](#page-2-0)

[Show me the matroids!](#page-9-0)

[Main result](#page-26-0)

[A classical story](#page-2-0)

A partition *λ ⊢ n* is a weakly decreasing sequence of nonnegative integers $\lambda_1 \geq \lambda_2 \geq \cdots$ summing to *n*.

A Young tableau *T* is a filling of a Ferrers diagram by positive integers. *T* is standard if it is filled by $\{1, 2, \ldots, n\}$ and increasing in rows and columns. Define *f^λ* as the number of standard tableaux of shape *λ*.

Proof 1: The Robinson-Schensted bijection:

pairs of standard tableaux of same shape \longleftrightarrow symmetric group \mathfrak{S}_n

Irreducible \mathfrak{S}_n representations are indexed by $\lambda \vdash n$ and have dimension *fλ*.

Let d_1, d_2, \ldots, d_r be the dimensions of the irreducible complex representations of a finite group. Then

$$
\sum_i d_i^2 = |G|.
$$

Proof 2:

$$
\sum_{\lambda} f_{\lambda}^2 = \sum_{i} d_{i}^2 = |G| = |\mathfrak{S}_n| = n!
$$

[7/45]

[Show me the matroids!](#page-9-0)

00000000000000000000

 $\mathsf{A}% _{1}\subset\mathsf{A}$ **matroid** $M=(E,\mathcal{I})$ is a set E with $\mathcal{I}\subseteq2^E$ such that

If *I ∈ I* then all subsets of *I* are in *I*, and

If $I_1, I_2 \in \mathcal{I}$ and $|I_1| = |I_2| + 1$, there exists *x* ∈ *I*₁ *− I*₂ such that I_2 *∪ x* ∈ *I*

Elements of *I* are **independent sets**. The **bases** of *M* are the inclusion-maximal elements of *I*. The set of all bases is *B*.

 $\mathsf{A}% _{1}\subset\mathsf{A}$ **matroid** $M=(E,\mathcal{C})$ is a set E with $\mathcal{C}\subseteq2^E$ such that

∅ ̸∈ C

If C_1 , $C_2 \in \mathcal{C}$ with $C_1 \subset C_2$, then $C_1 = C_2$.

If $C_1, C_2 \in \mathcal{C}$ are distinct, and $e \in C_1 \cap C_2$, then there is a $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) - e$

Elements of *C* are **circuits**. A circuit of *M* is an minimal set which is not in *I*.

The $uniform matroid $\textit{U}_{k,n}$ models *n*-many vectors in $\mathbb{R}^k$$ in general position

Bases *←→* any set of *k*-many vectors

Circuits *←→* any set of *k* + 1-many vectors

[A classical story](#page-2-0) and the matroids of the matroids!

A classical story of the matroids!

A classical story of the matroids of the matroids!

A graph Γ with edges *E* forms a matroid:

Bases *←→* spanning trees

Circuits *←→* cycles

[A classical story](#page-2-0) and the matroids of the matroids!

A classical story [Show me the matroids!](#page-9-0)
 [Main result](#page-26-0) be a completed by a complete matroids!

The columns of a matrix form a matroid:

$$
\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 2 & 4 \end{bmatrix}
$$

00000000000000000000

The combinatorial model for a subspace is a **flat**

The flats of a matroid form a ranked lattice. The rank of the matroid is then defined to be the rank of the lattice. A rank-*k −* 1 flat is called a **hyperplane.** If a hyperplane $H \in \mathcal{C}$, then it is called a **circuit hyperplane.**

[A classical story](#page-2-0) and the matroids of the matroids!

A classical story of the matroids of the matroids!

A classical condensation of the matroids of t

Let *x, y* be elements of a poset. Define the Möbius function

$$
\mu(x, y) := \begin{cases} 1 & x = y \\ -\sum_{x \le z < y} \mu(x, z) & \text{otherwise} \end{cases}
$$

Let *M* be a rank-*k* matroid with lattice of flats *L*(*M*)

$$
\chi_M(t) := \sum_{F \in L(M)} \mu(\overline{\emptyset}, F) t^{k-r(F)}
$$

A matroid *M* on groundset *E*, has Orlik–Solomon algebra *OS*(*M*), a certain quotient of the exterior algebra $\bigwedge E$

χM(*t*) determines the Poincaré polynomial of *OS*(*M*)

Fix *M*. There is a unique polynomial *PM*(*t*) satisfying: $P_M(t) = 1$ if $r(M) = 0$,

 $deg P_M(t) < r(M)/2$ when $r(M) > 0$,

$$
t^{r(M)}P_M(t^{-1}) = \sum_{F \in L(M)} P_{M_F}(t) \chi_{M^F}(t).
$$

$$
P_M(t)
$$
 is the matroid Kazhdan-Lusztig polynomial

[A classical story](#page-2-0) and the matroids of the matroids!

A classical story of the matroids of the matroids!

A classical story of the matroids of the matr

 $P_M(t)$ has positive coefficients

Conjecture true for sparse paving matroids

Conjecture true for any *M*

M is a paving matroid if all circuits have size at least $k = r(M)$

A paving matroid is sparse if the set *CH* of circuit hyperplanes satisfies *E* $\binom{E}{k} = \mathcal{C} \mathcal{H} \sqcup \overline{\mathcal{B}}$

Asymptotically almost all matroids are sparse paving

Asymptotically logarithmically almost all matroids are sparse paving

Let *M* be rank-*k*, sparse paving, on a groundset of size *n*, with circuit hyperplanes $\mathcal{CH}.$ The $\it t^i$ coefficient in $P_{\it M}(t)$

$SSKYT(n - k + 1, i, k - 2i + 1) - |CH| \cdot \overline{SSKT}(i, k - 2i + 1)$

Proof idea: Combinatorial argument with recursion.

[A classical story](#page-2-0) and the matroids of the matroids!

A classical story [Show me the matroids!](#page-9-0)

A classical condensation of the matroids of t

$SSkYT(a, i, b) = #standard fillings of$

Lee, Nasr, and Radcliffe combinatorially prove an identity involving Kazhdan-Lusztig polynomials and standard fillings of skew Young tableaux.

Standard skew Young tableaux count the dimension of certain (reducible) S*ⁿ* representations

Is there representation theory lurking?

YES!

[Main result](#page-26-0)

Let *W* be a group. An equivariant matroid $W \curvearrowright M$ is a matroid with a *W*-action such that $gl \in \mathcal{I}$ for all $g \in W$ and $I \in \mathcal{I}$.

The action of *W* induces an action on *OS*(*M*). The equivariant characteristic polynomial of $W \cap M$ is a graded virtual representation $\chi_{\textit{M}}^{\textit{W}}(t)$. The coefficient of t^{k-i} is determined by *OS*(*M*)*ⁱ* .

Let $W \sim M$ be an equivariant matroid, W_F denote the stabilizer of F_{\cdot} Then there exists $P^{W}_{M}(t)$ satisfying If $r(M) = 0$, then $P_M^W(t)$ is $\mathbb{1}_W t^0$

If $r(M) > 0$, then deg $P_M^W(t) < r(M)/2$

$$
t^{r(M)}P_{M}^{W}(t^{-1})=\sum_{[F]\in L(M)/W}\operatorname{Ind}_{W_{F}}^{W}\left(P_{M_{F}}^{W_{F}}(t)\otimes\chi_{M^{F}}^{W_{F}}\right)
$$

 $\varphi: W' \to W$ a homom. then $P^{W'}_M(t) = \varphi^* P^{W'}_M(t)$

and

Compare:

$$
t^{r(M)}P^W_M(t^{-1})=\sum_{[F]\in L(M)/W}\operatorname{Ind}_{W_F}^W\left(P^{W_F}_{M_F}(t)\otimes\chi^{W_F}_{M^F}\right).
$$

» Relaxation

A stressed hyperplane *H* of a rank-*k* matroid $M = (E, B)$ has every *k*-subset a circuit.

The operation of relaxation at a stressed hyperplane *H* forms a new matroid $\tilde{M} = (E, \tilde{B})$ with bases

 $\tilde{\mathcal{B}} = \mathcal{B} \sqcup \{ \mathcal{S} \subseteq \mathcal{H} : |\mathcal{S}| = k \}.$

There exists a polynomial *pk,^h* such that

$$
P_M(t) = P_{\tilde{M}}(t) - p_{k,h}
$$

If *M* is a paving matroid with $|E| = n$ and has exactly *λh*-many stressed hyperplanes of size *h*, then

$$
P_M(t) = P_{U_{k,n}}(t) - \sum_{h \ge k} \lambda_h \cdot p_{k,h}.
$$

» Idea of the proof

Let $W \cap M$ be an equivariant matroid with stressed hyperplane *H*.

Let $W \curvearrowright \widetilde{M}$ denote the equivariant matroid found by simultaneously relaxing all hyperplanes in [*H*].

There exists an equivariant polynomial $\rho_{k,h}^{\mathfrak{S}_h}$ such that

$$
P_M^W(t) = P_{\widetilde{M}}^W(t) - \ln d_{W_H}^W \operatorname{Res}_{W_H}^{\mathfrak{S}_h} P_{k,h}^{\mathfrak{S}_h}
$$

The coefficients of t^i are

$$
\{t^i\}p_{k,h}^{\mathfrak{S}_h}=S^{\mu_i/\lambda_i}
$$

where $\mu_i, \lambda_i \vdash h$ are: $\mu_i = h-2i+1, (k-2i+1)^i$ and

The coefficient of t^i in $\rho_{k,h}^{\mathfrak{S}_h}$ is

which has dimension equal to the number of standard fillings

» Idea of proof

 $\mathcal{U}_{k-1,h}^{\mathfrak{S}_h} \oplus \mathcal{U}_{1,1}$ to $\mathcal{U}_{k,h+1}^{\mathfrak{S}_{h+1}}$.

 $\rho_{k,h}^{\mathfrak{S}_h}$ depends only on k,h , so one example is enough.

A series of relaxations can be performed to a sparse paving matroid to obtain the uniform matroid. In other words:

$$
P_{M}^{W}(t) = P_{U_{k,n}}^{W}(t) - \sum_{[H] \in \mathcal{CH}} \text{Ind}_{W_H}^{W} \text{Res}_{W_H}^{\mathfrak{S}_h} p_{k,h}^{\mathfrak{S}_h}
$$

Every coefficient of t^i in $P^{\mathfrak{S}_n}_{U_{k,n}}(t)$ is given by the skew shape:

For sparse paving matroids, $h = k$. This provides representation theoretic proof of the Lee–Nasr–Radcliffe formula!

 $k - 2i + 1$

THANK YOU!

- » References
- 6 Ben Elias, Nicholas Proudfoot, and Max Wakefield, The Kazhdan–Lusztig polynomial of a matroid, Advances in Mathematics **299** (2016), 36–70.
- **F** Luisa Ferroni, George D. Nasr, and Lorenzo Vecchi, Stressed hyperplanes and Kazhdan–Lusztig gamma-positivity for matroids, 2021.
- **F** Katie R. Gedeon, Nicholas Proudfoot, and Benjamin Young, The equivariant Kazhdan–Lusztig polynomial of a matroid, J. Comb. Theory, Ser. A **150** (2017), 267–294.
- **F** Alice L. L. Gao and Matthew H. Y. Xie, The inverse Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. B **151** (2021), 375–392. MR 4294228

» References (cont.)

- 6 Alice L. L. Gao, Matthew H.Y. Xie, and Arthur L. B. Yang, The equivariant inverse Kazhdan–Lusztig polynomials of uniform matroids, 2021.
- 6 Trevor Karn, George Nasr, Nicholas Proudfoot, and Lorenzo Vecchi, Equivariant Kazhdan-Lusztig theory of paving matroids, 2022.
- Kyungyong Lee, George D. Nasr, and Jamie Radcliffe, A 6 combinatorial formula for Kazhdan–Lusztig polynomials of sparse paving matroids, Electron. J. Comb. **28** (2021).
- 6 Dillon Mayhew, Mike Newman, Dominic Welsh, and Geoff Whittle, On the asymptotic proportion of connected matroids, European J. Combin. **32** (2011), no. 6, 882–890. MR 2821559

» References(cont.)

- 量 Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Inventiones mathematicae **56** (1980), no. 2, 167–189 (eng).
- 量. Rudi Pendavingh and Jorn van der Pol, On the number of matroids compared to the number of sparse paving matroids, Electron. J. Combin. **22** (2015), no. 2, Paper 2.51, 17. MR 3367294
- Nicholas Proudfoot, Yuan Xu, and Benjamin Young, The 6. Z-polynomial of a matroid, Electron. J. Comb. **25** (2018), P1.26.