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Hyperplane Arrangements

A hyperplane arrangement A is a union of codimension-1 subspaces
of Kn, each one called a hyperplane. We write a defining polynomial
Q(A) for A as a product of linear polynomials in n variables, and
the arrangement corresponds to the points in Kn for which Q(A)

vanishes.

Figure 1: A picture of A with Q(A) =
x1x2(x1 + x2)(x1 − x2)

Example 1. Let Q(A) = x1x2(x1 + x2)(x1 − x2). There are 4 linear
factors, so there are 4 hyperplanes.

We want to study arrangements, so we associate combinatorial and
algebraic objects to an arrangement A.

Definition 1. The lattice of flats L(A) of A is the partially ordered set

P = (S,≤) = (subspaces of A,⊇).

Define the Möbius function

µ(R2, F) =

1 F = R2

−∑G<F µ(R2, G) else

To each lattice of flats, we associate the Poincaré polynomial1 1 If you know the characteristic polyno-
mial, this is similar, but different.

π(L(A); t) = ∑
F∈L(A)

µ(R2, F)(−t)codim F.

R2

x1 = 0 x2 = 0 x1 = −x2 x1 = x2

0

Figure 2: The lattice of flats of the
arrangement pictured above.

Example 2. The Hasse diagram of L(A) is shown at right, for A as in
Example 1. We have π(L(A); t) = 1 + 4t + 3t. To compute L(A) it
is sometimes helpful to think of the normal vectors to the subspace. For
example, ker([1, 0]) = span[0, y]T and ker([1,−1]) = span[x, x]T , and

ker


1 0
0 1
1 1
1 −1

 = span

[
0
0

]
= 0.



poincaré polynomials and invariant theory 2

Polya Theory

Definition 2. The powersum symmetric function pk is defined to be

pk = xk
1 + xk

2 + · · · ∈ lim
→

Q[x1, . . . , xn].

It is a power series in infinitely many variables of bounded degree. Let λ =

(λ1, λ2, . . . , λℓ) ⊢ n with all parts nonzero. Then define

pλ = pλ1 pλ2 pλ3 · · · pλℓ
.

We also define the monomial symmetric function mλ as

mλ = ∑
sort(α)=λ

xα

where α is a sequence of integers and sort(α) is the arrangement of α into a
weakly decreasing sequence.

Let G ≤ Sn. To g ∈ G, we can associate a partition ρ(g) by consid-
ering the length of the cycles in g. The partition ρ(g) is constant on
Sn conjugacy classes [g].

Definition 3. The cycle index symmetric function is

ZG =
1
|G| ∑

g∈G
pρ(g).

Example 3. Consider the subgroup G = Z/2 × Z/2 ≤ S4. The possible
ρ(g) are 1111 and 211 and 22. The cycle index symmetric function of G is

ZG =
1
4

(
p4

1 + 2p2 p2
1 + p22

)
.

Let XS denote the set of all functions S → {x1, x2, x3, . . .}. Let
XS/G denote the set of orbits of G acting on the variables xi. We
are supposed to think of a single function in XS as a “coloring" of
the set S. Then an orbit in XS/G is a coloring “up to symmetry." We
associate the monomial xO to each orbit.

Definition 4. The pattern inventory symmetric function is

FG = ∑
O∈XS/G

xO .

The definition of ZG is useful because of the following theorem.

Theorem 1 (Polya). ZG = FG.

In other words, the expansion into monomials of ZG enumerates
colorings of a set with G symmetry.
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Alice Bob
FF GG
FG FG
GG FF.

Figure 3: Possible ways to distribute 2
glazed and 2 frosted donuts, counted by
3m22

Alice Bob
FG GG
GG FG.

Figure 4: Possible ways to distribute 3
glazed and 1 frosted donuts, counted by
2m31.

Example 4. Suppose we have 4 flavors of donuts. How many ways are
there to distribute 2 donuts to Alice and 2 donuts to Bob? Let

G = Z/2 × Z/2.

This is the symmetry group of giving donuts to Alice and Bob because they
don’t care in which order they have their donuts, but it does matter who gets
which. We expand

ZG =
1
4

(
p4

1 + 2p2 p2
1 + p2

2

)
= 6m1111 + 4m211 + 3m22 + 2m31 + m4.

Thus, there are 6 ways (= (4
2)) to give Alice and Bob 4 different flavored

donuts, and 5 ways to give them two different donuts. For suppose we have
glazed (G) and chocolate frosted (F). Then the possibilities are listed at right.

Invariant Theory

Let a group G act on a ring R. The fundamental object2 of study in 2 For tools and techniques used to
study this ring, see Derksen-Kemper’s
Computation Invariant Theory.

(classical) invariant theory is the invariant ring

RG = {r ∈ R : g · r = r}.

Example 5. C[x1, x2, . . . , xn]Sn = {symmetric polynomials}

Example 6. C[x1, x2, . . .]Sn = C[p1, p2, p3, · · · ], a polynomial ring in
infinitely many variables.

The Reynolds operator R is a projection R → RG.

R(x) =
1
|G| ∑

g∈G
g · x.

Example 7. Consider R : C[x1, x2, . . . , xn] → C[x1, x2, . . . , xn]Sn . Then

R(1) =
1
n! ∑

g∈Sn

g · 1 =
n!
n!

= 1.

and
R(x1) =

1
n! ∑

g∈Sn

g · x1 =
x1 + x2 + x3

3

and

R(x1 + x2 + · · ·+ xn) =
1
n! ∑

g∈Sn

g · (x1 + x2 + · · ·+ xn) = x1 + x2 + · · ·+ xn



poincaré polynomials and invariant theory 4

Plethysm

Plethysm is an algebraic operation which can be thought of as "sub-
stituting the monomials of a function in for the variables in a sym-
metric function another."3 3 The definition I’ll give here is as writ-

ten in Macdonald, but you should also
see Loehr-Remmel’s A Computational
and Combinatorial Exposé of Plethystic
Calculus to learn more and actually use
it.

Definition 5. Suppose g = ∑α uαxα. Define yi as

∏
i
(1 + yit) = ∏

i
(1 + xαt)uα .

Then define the plethysm

f [g] = f (y1, y2, y3, . . .).

Example 8. Let g = 1 + q. Let

f = p2 p1

= (x2
1 + x2

2 + · · · )(x1 + x2 + · · · )
= x3

1 + x3
2 + · · ·+ x2

1x2 + x2
2x1 + x2

1x3 + · · ·

Then
(1 + y1t)(1 + y2t) · · · = (1 + t)(1 + qt)

so yi = 0 for i > 2 and

1 + (y1 + y2)t + y1y2t2 = 1 + (1 + q)t + qt2.

So y1 = 1 and y2 = q (or the other way around, but f a symmetric function
so

f (y1, y2, 0, . . .) = f (y2, y1, 0, . . .)

= y3
1 + y3

2 + y2
1y2 + y2

2y1

= 1 + q3 + q + q2

Alternatively we could use the following.

Definition 6. The operation of plethysm is uniquely defined by

1. pk[pm] = pkm,

2. pk[ f ± g] = pk[ f ]± pk[g], (note that this is particular to pk)

3. pk[ f · g] = pk[ f ] · pk[g],

4. ( f ± g)[h] = f [h]± g[h], and

5. ( f · g)[h] = f [h] · g[h]

Example 9. Let f = 1
4
(

p4
1 + 2p2 p2

1 + p2
2
)
= 6m1111 + 4m211 + 3m22 +

2m31 + m4. Then

f [1 + q] =
1
4

(
(1 + q)4 + 2(1 + q2)(1 + q)2 + (1 + q2)2

)
= 3q2 + 2(q3 + q) + (1 + q4).
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Conjecture 1 (Foulkes). The quantity ha[hb]− hb[ha] is Schur positive.

Open Problem 1. Combinatorially interpret4 the coefficients in the Schur 4 Some cases are known, for example
sk [s2] is the sum over the Schur func-
tions of all partitions of 2k into even
parts. For a more detailed list of known
cases, see The Mystery of Plethysm
Coefficients by Colmenarejo-Orellana-
Saliola-Schilling-Zabrocki.

expansion of sλ[sµ].
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