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A partition λ ` n is a weakly decreasing sequence of nonnegative
integers λ1 ≥ λ2 ≥ · · · summing to n.

Example

λ = (5, 4, 4, 2, 1) ` 16 has Ferrers diagram
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A Young tableau T is a filling of a Ferrers diagram by positive
integers. T is standard if it is filled by {1, 2, . . . , n} and increasing
in rows and columns. Define f λ as the number of standard
tableaux of shape λ.

Example

One of f (5,4,4,2,1) = 549120 standard Young tableaux:

1 6 10 13 16

2 7 11 14

3 8 12 15

4 9

5
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Fact
Fix n. Then ∑

λ⊢n
(f λ)2 = n!

Proof 1:
The Robinson-Schensted bijection:

pairs of standard tableaux of same shape←→ permutation in Sn
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Definition
A representation of a group G is a homomorphism

ρ : G→ GLn(C).

A representation is irreducible if there is no G-stable
subspace W ⊆ Cn.
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Example

There is a representation of S3 defined by sending

(12) 7→

0 1 0
1 0 0
0 0 1



(23) 7→

1 0 0
0 0 1
0 1 0

 .

The action: π ∈ S3 permutes coordinates. So

(12) · 〈1, 2, 3〉 = 〈2, 1, 3〉,

and
π · 〈1, 1, 1〉 = 〈1, 1, 1〉.
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Fact
Irreducible Sn representations are indexed by λ ` n.
Denote them by S λ. Then

dim Sλ = f λ.

Example

The representation on the last slide contains S(3) and
S(2,1).

Fact
Let d1, d2, . . . , dr be the dimensions of all irreducible
representations of a finite group. Then∑

i
d 2

i = |G|.
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Fact
Fix n. Then ∑

λ⊢n
(f λ)2 = n!

Proof 2: ∑
λ

(f λ) 2 =
∑

i
d 2

i = |G| = |Sn| = n!
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Combinatorial identity with standard Young tableaux

Combinatorial proof Algebraic proof
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Let v1, . . . , vn be vectors in a vector space V (not all 0). Then any
two bases A,B for the span of v1, . . . vn satisfy the following
requirements:

1) There must be at least one basis
2) If a ∈ A− B then there is a b ∈ B with (A− a) ∪ b a basis.

b

a

b

a
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Definition 1

A matroid M = (E,B) is a finite set E with ∅ 6= B ⊆ 2E

such that if A,B ∈ B and a ∈ A, there exists b ∈ B such
that

(A− a) ∪ b ∈ B

Call B the bases of the matroid.

Matroids have the combinatorics of vectors without the “zeroth
postulate”.
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Definition 2

A matroid M = (E, C) is a set E with C ⊆ 2E such that

∅ 6∈ C

If C1,C2 ∈ C with C1 ⊆ C2, then C1 = C2.

If C1,C2 ∈ C are distinct, and e ∈ C1 ∩ C2, then
there is a C3 ∈ C such that C3 ⊆ (C1 ∪ C2)− e

Call C the circuits.
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Example

The uniform matroid Uk,n models n-many
k-dimensional vectors in general position

Bases ←→ any set of k-many vectors

Circuits ←→ any set of k + 1-many vectors

Example of the example

U3,12 corresponds to 12 generic vectors in R3. One
choice of basis is {e1, e2, e3}. On the other hand
{e1, e2, e3, v} is dependent for any v ∈ R3.
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Example

A graph Γ with edges E forms a matroid:

Bases ←→ spanning trees

Circuits ←→ cycles

C1

C2

C3 e
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Example

The columns of a matrix form a matroid:[
1 2 0 0
2 4 2 4

]
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Example

The projective plane is the set of lines through the origin
in F3.
If F = F2, 1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1


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Theorem (Nelson, 2018)

Almost all matroids cannot be written as a matrix.
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» Example: Vámos matroid

1

2

3

4
5

6

7

8
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» Vocab

Finite set of vectors Matroids
Maximally independent sets Bases B
Minimally dependent sets Circuits C

Dimension of span Rank
Subspaces Flats F

Codimension 1 subspaces Hyperplanes H

Definition
CH = C ∩ H is the set of circuit hyperplanes.

A hyperplane H is stressed if every subset of H of size
rk(E) is in C. Denote the set of (nontrivial) stressed
hyperplanes by SH.
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M is a paving matroid if all circuits have size at least k = rk(E)

A paving matroid is sparse if
(E

k
)
= CH t B

Conjecture (Mayhew, Newman, Welsh, Whittle ’11)

Asymptotically almost all matroids are sparse paving

Theorem (Pendavingh, van der Pol ’15)

Asymptotically logarithmically almost all matroids are
sparse paving
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M is a paving matroid if all circuits have size at least k = rk(E)

A paving matroid is sparse if
(E

k
)
= CH t B

Example

Uk,n ↔ sparse paving[
1 2 0 0
2 4 2 4

]
↔ paving

PF3 ↔ paving

V↔ sparse paving
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Fact

The matroid Kazhdan–Lusztig polynomial PM(t) is an
interesting polynomial invariant of a matroid M,
introduced by Elias, Proudfoot, and Wakefield in 2016.

It is defined in terms of F .
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A skew partition λ/µ is a pair of partitions where the diagram of µ
is contained in the diagram of λ

Example

If λ = (4, 3, 2, 1) and µ = (2, 1) then λ/µ has diagram

mod =
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A skew tableau T is a filling of a skew diagram by positive integers.
T is standard if it is filled by {1, 2, . . . , |λ| − |µ|} and increasing in
rows and columns. Define f λ/µ as the number of standard skew
tableaux of shape λ/µ.

Example

Two of f (4,3,2,1)/(2,1) = 272 standard skew tableaux:

1 2

3 4

5 6

7

3 7

2 6

1 5

4
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Theorem (Lee, Nasr, Radcliffe ’21)

Let M be a rank-k, sparse paving matroid with E = [n]
and circuit hyperplanes CH. The t i coefficient in PM(t)
is

f λ/µ − |CH|f λ′/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′ = [(k− 2i + 1)i+1] , µ′ = [k− 2i, (k− 2i− 1)i−1]
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n− k + 1

i

k − 2i+ 1

i+ 1

k − 2i+ 1
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Theorem (Lee, Nasr, Radcliffe ’21)

For a sparse paving matroid M, the t i coefficient in
PM(t) is

f λ/µ − |CH|f λ′/µ′

Proof 1 (LNR ’21): Combinatorial argument with recursion.
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Fact

There is a (reducible) Sn representation S λ/µ of
dimension f λ/µ.
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Theorem (Lee, Nasr, Radcliffe ’21)

For a sparse paving matroid M, the t i coefficient in
PM(t) is

f λ/µ − |CH|f λ′/µ′

Proof 1 (LNR ’21): Combinatorial argument with recursion.
Proof 2 (KNPV ’22): dim(some Sλ/µ coming from M).
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» Example: Vámos matroid

1

2

3

4
5
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Some general facts:

Know PM(t) always has constant term 1.

Know deg PM(t) < rk E
2 .

rk V = 4 so PV(t) = 1 + ?t.

Only need to compute linear coefficient!
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λ = [6, 3], µ = [1] −→

λ′ = [3, 3] , µ′ = [2] −→

|CH| = 5

f λ/µ − 5f λ′/µ′
= 48− 15 = 33

PV(t) = 1 + 33t
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» Example: Projective plane over F3

λ/µ =

CH = ∅
|SH| = 13

λ′/µ′ =

f λ/µ − 13f λ′/µ′
= 65− 13 ∗ 5 = 6= 0

From Elias, Proudfoot, and Wakefield, we know
PM(t) = 1 [34/43]



A classical story Matroids Combinatorial formulas

Theorem

For a (arbitrary!) paving matroid M, the ti coefficient in
PM(t) is

f λ/µ −
∑

H∈SH
f λ′(|H| )/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′(h) = [h−2i+1, (k−2i+1)i] , µ′ = [h−2i, (k−2i−1)i−1]

Proof: Our proof of LNR’s theorem implies this more general result
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n− k + 1

i

k − 2i+ 1

h− k + 1

i

k − 2i+ 1
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» Proof idea

In a stressed hyperplane, all size-k subsets are circuits.
Create a new matroid by turning all circuits in H into bases

turns into
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» Proof idea

Do this until you obtain Uk,n

to to

Each step accounts for S λ′(h)/µ′ .
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Certain PM(t) in terms of standard skew Young tableaux

Combinatorial proof [LNR21] Algebraic proof [KNPV22]
+ extension
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THANK YOU!
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