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A partition λ ⊢ n is a weakly decreasing sequence of nonnegative
integers λ1 ≥ λ2 ≥ · · · summing to n.

Example

λ = (5, 4, 4, 2, 1) ⊢ 16 has Ferrers diagram
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A Young tableau T is a filling of a Ferrers diagram by positive
integers. T is standard if it is filled by {1, 2, . . . , n} and increasing
in rows and columns. Define f λ as the number of standard
tableaux of shape λ.

Example

One of f (5,4,4,2,1) = 549120 standard Young tableaux:

1 6 10 13 16

2 7 11 14

3 8 12 15

4 9

5
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Fact
Fix n. Then ∑

λ⊢n
(f λ)2 = n!

Proof 1:
The Robinson-Schensted bijection:

pairs of standard tableaux of same shape←→ symmetric group Sn
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Fact

The Specht modules Sλ are irreducible Sn
representations indexed by λ ⊢ n and

dim Sλ = f λ.

Fact
Let d1, d2, . . . , dr be the dimensions of the irreducible
complex representations of a finite group. Then∑

i
d 2

i = |G|.
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Fact
Fix n. Then ∑

λ⊢n
(f λ)2 = n!

Proof 2: ∑
λ

(f λ) 2 =
∑

i
d 2

i = |G| = |Sn| = n!
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Combinatorial identity with standard Young tableaux

Combinatorial proof Algebraic proof
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A skew partition λ/µ is a pair of partitions where the diagram of µ
is contained in the diagram of λ

Example

If λ = (4, 3, 2, 1) and µ = (2, 1) then λ/µ has diagram

mod =
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A skew tableau T is a filling of a skew diagram by positive integers.
T is standard if it is filled by {1, 2, . . . , |λ| − |µ|} and increasing in
rows and columns. Define f λ/µ as the number of standard skew
tableaux of shape λ/µ.

Example

Two of f (4,3,2,1)/(2,1) = 272 standard skew tableaux:

1 2

3 4

5 6

7

3 7

2 6

1 5

4
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Theorem (Lee, Nasr, Radcliffe ’21)

Let PM(t) be the matroid Kazhdan–Lusztig polynomial
of M, a rank-k, sparse paving matroid with groundset [n]
and circuit hyperplanes CH. The t i coefficient in PM(t)
is

f λ/µ − |CH|f λ′/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′ = [(k− 2i + 1)i+1] , µ′ = [k− 2i, (k− 2i− 1)i−1]
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n− k + 1

i

k − 2i+ 1

i+ 1

k − 2i+ 1
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Theorem (Lee, Nasr, Radcliffe ’21)

Let PM(t) be the matroid Kazhdan–Lusztig polynomial
of M, a rank-k, sparse paving matroid with groundset [n]
and circuit hyperplanes CH. The t i coefficient in PM(t)
is

f λ/µ − |CH|f λ′/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′ = [(k− 2i + 1)i+1] , µ′ = [k− 2i, (k− 2i− 1)i−1]

Proof 1 (LNR ’21): Combinatorial argument with recursion.
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Definition

The skew Specht module S λ/µ is

S λ/µ =
⊕
ν

(S ν)⊕c λ
µ,ν

where c λ
µ,ν are Littlewood–Richardson coefficients.

Fact

S λ/µ are (reducible) Sn representations and

dim Sλ/µ = f λ/µ.
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Theorem (Lee, Nasr, Radcliffe ’21)

Let PM(t) be the matroid Kazhdan–Lusztig polynomial
of M, a rank-k, sparse paving matroid with groundset [n]
and circuit hyperplanes CH. The t i coefficient in PM(t)
is

f λ/µ − |CH|f λ′/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′ = [(k− 2i + 1)i+1] , µ′ = [k− 2i, (k− 2i− 1)i−1]

Proof 1 (LNR ’21): Combinatorial argument with recursion.
Proof 2 (KNPV ’23): dim(skew Specht module from M).
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» Example: U3,12

λ/µ =

CH = ∅

f (10,2) = 54

PU3,12(t) = 1 + 54t
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» Example: Vámos matroid

1

2

3

4
5

6

7

8
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λ = [6, 3], µ = [1] −→

λ′ = [3, 3] , µ′ = [2] −→

|CH| = 5

f λ/µ − 5f λ′/µ′
= 48− 15 = 33

PV(t) = 1 + 33t

[18/56]
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» Example: Projective plane over F3

λ/µ =

CH = ∅

λ′/µ′ =

f λ/µ

− 13f λ′/µ′

= 65

− 13 ∗ 5 =

̸= 0

PM(t) = 1

[19/56]
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» Example: Projective plane over F3

λ/µ =

|SH| = 13

λ′/µ′ =

f λ/µ − 13f λ′/µ′
= 65− 13 ∗ 5 = 0

PM(t) = 1
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Theorem

Let PM(t) be the matroid Kazhdan–Lusztig polynomial
of M, a rank-k, (arbitrary!) paving matroid with
groundset [n] and nontrivial stressed hyperplanes SH.
The ti coefficient in PM(t) is

f λ/µ −
∑

H∈SH
f λ′(|H| )/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′(h) = [h−2i+1, (k−2i+1)i] , µ′ = [h−2i, (k−2i−1)i−1]

Proof: Our proof of LNR’s theorem implies this more general result
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n− k + 1

i

k − 2i+ 1

h− k + 1

i

k − 2i+ 1
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Certain PM(t) in terms of standard skew Young tableaux

Combinatorial proof [LNR21] Algebraic proof [KNPV23]
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» What do I owe you?

Matroids
Circuits and stressed hyperplanes
(Sparse) paving

Kazhdan–Lusztig polynomials
How S λ/µ arises

[23/56]
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“Definition” 1

A matroid M = (E,B) is a finite set E (called the
groundset) together with B ⊆ 2E satisfying some
axioms combinatorially modeling choices of bases for a
vector space.

Alternatively...

“Definition” 2

A matroid M = (E, C) is a ground set E together with
C ⊆ 2E satisfying some axioms modeling minimal linear
dependence of vectors.

[24/56]
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Bases ←→ maximal independent sets

Circuits ←→ minimal dependent sets

[25/56]
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Example

The uniform matroid Uk,n models n-many
k-dimensional vectors in general position

Bases ←→ any set of k-many vectors

Circuits ←→ any set of k + 1-many vectors

Example of the example

U3,12 corresponds to 12 generic vectors in R3. One
choice of basis is {e1, e2, e3}. On the other hand
{e1, e2, e3, v} is dependent for any v ∈ R3.

[26/56]
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The combinatorial model for: vectors → groundset elements
subspaces → flats

Flats form a ranked lattice L. Define r (M) = r (L) = k.
Rank-(k− 1) flats are hyperplanes. A circuit hyperplane is both.
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M is a paving matroid if all circuits are at least size k = r (M)

A paving matroid is sparse if the set CH of circuit hyperplanes
satisfies

(E
k
)
= CH ⊔ B

A circuit hyperplane is the prototypical example of...
a stressed hyperplane H of a rank-k matroid has every
k-subset a circuit.
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Conjecture (Mayhew, Newman, Welsh, Whittle ’11)

Asymptotically almost all matroids are sparse paving
(⇒ paving)

Theorem (Pendavingh, van der Pol ’15)

Asymptotically logarithmically almost all matroids are
sparse paving

[30/56]
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» What do I owe you?

Matroids ✓
Circuits and stressed hyperplanes ✓
(Sparse) paving ✓

Kazhdan–Lusztig polynomials
How S λ/µ arises
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In order to define PM, first define

χM(t) =
∑

F∈L(M)

µ(∅,F )t k−r (F )

where µ is the Möbius function.
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Definition/Theorem (Elias, Proudfoot, Wakefield ’16)

Fix M. There exists a unique polynomial PM(t)
satisfying:

PM(t) = 1 if r (M) = 0,

deg PM(t) < r (M)/2 when r (M) > 0,

t r (M)PM(t−1) =
∑

F∈L(M)

PMF(t)χMF(t).

[33/56]
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MF and MF
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Let W be a group. An equivariant matroid W ↷ M is a matroid
with a W-action “preserving the matroid.”

e.g. gB ∈ B for all g ∈W and B ∈ B

gF is another flat of the same rank

[36/56]
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The Orlik–Solomon algebra OS(M) is a certain quotient of the
exterior algebra

∧• Kn

Theorem (Orlik, Solomon ’80)

χM(t) determines the Poincaré polynomial of OS(M)

W ↷ M induces a W-action on OS(M). Use this to define a
graded virtual representation called the equivariant characteristic
polynomial. The coefficient of tk−i is ±OS(M)i.

χW
M(t) χM(t)“dimension”

[37/56]
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Definition/Theorem (Gedeon, Proudfoot, Young ’17)

Let W ↷ M be an equivariant matroid. Then there
exists a unique PW

M(t) with
If r(M) = 0, then PW

M(t) is 1W t0

If r(M) > 0, then deg PW
M(t) < r(M)/2

tr(M)PW
M(t) =

∑
[F]∈L(M)/W

IndW
WF

(
PWF

MF
(t)⊗ χWF

MF

)
φ : W ′ →W a homom. then PW ′

M (t) = φ∗PW
M(t)

where WF denotes the stabilizer of F.

[38/56]
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Compare:
tr(M)PM(t) =

∑
F∈L(M)

PMF(t)χMF(t)

and
tr(M)PW

M(t) =
∑

[F]∈L(M)/W
IndW

WF

(
PWF

MF
(t)⊗ χWF

MF

)
.

PW
M(t) PM(t)dimension

[39/56]



A classical story Our story The nitty-gritty Proof ideas

Compare:
tr(M)PM(t) =

∑
F∈L(M)

PMF(t)χMF(t)

and
tr(M)PW

M(t) =
∑

[F]∈L(M)/W
IndW

WF

(
PWF

MF
(t)⊗ χWF

MF

)
.

PW
M(t) PM(t)dimension

[39/56]



Proof ideas



A classical story Our story The nitty-gritty Proof ideas

Theorem (Ferroni, Nasr, Vecchi ’21)

Let M = (E,B) be a matroid with stressed hyperplane H.
The operation of relaxation at H forms a new matroid
M̃ = (E, B̃) with bases

B̃ = B ⊔ {S ⊆ H : |S| = k}.

[40/56]
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Theorem (Ferroni, Nasr, Vecchi ’21)

There exists a polynomial pk,h such that

PM(t) = PM̃(t)− pk,h

Fact
M is paving ⇔ a sequence of relaxations makes it Uk,n

Theorem (Ferroni, Nasr, Vecchi ’21)

If M is a paving matroid with |E| = n and has exactly
λh-many stressed hyperplanes of size h, then

PM(t) = PUk,n(t)−
∑
h≥k

λh · pk,h.

[43/56]
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» Idea of the proof
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Let W ↷ M be an equivariant matroid with stressed hyperplane H.

Let W ↷ M̃ denote the equivariant matroid found by
simultaneously relaxing all hyperplanes in [H ].

Theorem (K.-Nasr-Proudfoot-Vecchi ’23)

There exists an equivariant polynomial pSh
k,h such that

PW
M(t) = PW

M̃(t)− IndW
WH ResSh

WH
pSh

k,h

[45/56]
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Theorem (K.-Nasr-Proudfoot-Vecchi ’23)

The coefficients of ti are

{t i}pSh
k,h = S λ′/µ′

where λ′, µ′ ⊢ h are:
λ′ = h− 2i + 1, (k− 2i + 1)i and
µ′ = k− 2i, (k− 2i− 1)i−1

[46/56]
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h− k + 1

i

k − 2i+ 1

[47/56]
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» Idea of proof

Relax USh
k−1,h ⊕ U1,1 to USh+1

k,h+1.

PM1⊕M2(t) = PM1(t)PM2(t)

pSh
k,h depends only on k, h, so one

example is enough.
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Theorem (Gao, Xie, Yang ’21)

Every coefficient of ti in PSn
Uk,n

(t) is given by the skew
Specht module of shape

n− k + 1

i

k − 2i+ 1

[49/56]
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Combine:

M is paving ⇔ a sequence of relaxations makes it Uk,n

Theorems (K.-Nasr-Proudfoot-Vecchi ’23)

PW
M(t) = PW

M̃(t)− IndW
WH ResSh

WH
pSh

k,h

and coefficients of pSh
k,h are Sλ(h)/µ

Theorem (Gao, Xie, Yang ’21)

Coefficients of PSn
Uk,n

(t) are Sλ/µ

dim(Sλ/µ) = f λ/µ

to obtain...

[50/56]
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Theorem

Let PM(t) be the matroid Kazhdan–Lusztig polynomial
of M, a rank-k, arbitrary paving matroid with groundset
[n] and nontrivial stressed hyperplanes SH. The ti

coefficient in PM(t) is

f λ/µ −
∑

H∈SH
f λ′(|H| )/µ′

where λ/µ, λ′/µ′ are as before.

[51/56]



A classical story Our story The nitty-gritty Proof ideas

THANK YOU!
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