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1 Overview

Today, I want to describe a computational tool I have been using to collect data on conjectures. If
I was a physicist I might describe this as a piece of lab equipment.

My goal today is twofold. First, I want to describe this approach, in case you all find it helpful in
your own work. Secondly, I would love to hear if anyone has thoughts on where this tool might be
useful or how to improve it.

1. The problem I want to solve

2. A linear programming approach

3. Extensions?

Assumptions: For the rest of the talk, V will be a finite dimensional or graded vector space over
C. For any set X, C[X] will denote the vector space with basis indexed by X.

2 The problem I want to solve.

A representation ρ : Sn → GL(V ) is called a permutation representation if ρ(G) ⊆ Sn ≤ GL(V ).
Equivalently, this means we could write every ρ(g) as a matrix with a single nonzero entry in every
row/column, with the nonzero entry being a 1. I think of this as a representation given by the
action of a group on a set, and extending that action to be on the indices of a vector space. (This
is Josue’s faithful action set up from yesterday.) One thing that will come up later is that the
character value of any conjugacy class is exactly the number of fixed points. So in a permutation
representation, all the character values are positive.

Example 1. Consider S4 acting on the labels of a square, up to dihedral action.

3 4

1 2

4 3

1 2

4 2

1 3

Since [S4 : D4] = 3, we see that there are three distinct labelings of the square, determined by
the number which is not adjacent to 1. We think of this as acting on the cosets S4/D4. Thus,
C[S4/D4] carries an S4-representation.

Notice that
C[S4/D4] ∼= 1D4 ⊗C[D4] C[S4] ∼= 1 ↑S4

D4
.

1



Fact 1. Every permutation representation looks like 1 ↑GH for some H.

Fact 2. The Frobenius character map

ch :
⋃
n

Sn representations →
⋃
n

Λn

is an injective function. It is linear with respect to ⊕ of representations. There are two important
linear bases for us. They are both indexed by partitions:

1. the complete homogenous basis hλ

2. the power sum basis pλ.

Upshot: Any representation (up to isomorphism) is uniquely mapped corresponds to a symmetric
function, so if we understand symmetric functions, we understand Sn-representations (and more!).

To compute 1 ↑GH , lets start with an easy case.

Example 2. It is easy to compute ch 1 ↑Sn+m

Sn×Sm
in the hλ-basis. It is exactly hnhm. Thus, by the

transitivity of induction, we can easily compute ch 1 ↑Sn
Sλ

= hλ, where Sλ = Sλ1 ×Sλ2 × · · · ≤ S|λ|.
Thus, every hλ appears as the Frobenius character of a permutation representation:

hλ = chC[Sn/Sλ].

Upshot: If a symmetric function f expressed in the h-basis has non-negative integral coefficients
(i.e. if it is “h-positive”), then it is a permutation representation with respect to some basis. (Find-
ing the objects which it permutes is a different and difficult question - see for example recent work
studying the Chow ring of the boolean matroid from my colleague Robbie Angarone, mathematical
sister Anastasia Nathanson, and advisor Vic Reiner [arXiv:2309.14312].)

Example 3. Let S4 act on the three dimensional space indexed by labelings of the corners of a
square. Then

chV = h22 − h31 + h4.

This means we know the irreducible decomposition of V . I want to point out that this representation
was defined as a permutation representation, but is NOT h-POSITIVE!

This leads into the main question I want to ask:

Question 1. Given an Sn-representation V , is it a permutation representation? If so, what are
the groups Hi so that

V =
⊕
i

C[Sn/Hi]?

If we can understand the Hi, maybe we can understand the sort of combinatorial objects we should
be looking for to index a basis for V - they must have an orbit representative stabilized by Hi.

We have seen that every Sn-representation V can be encoded as a symmetric function of degree n.
h-positivity is a sufficient, but not necessary, condition for V to be a permutation representation.
If chV is not p-positive, then it cannot be a permutation representation, because the coefficients in
the p-expansion comes from the character value after applying an appropriate normalizing constant.
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h-positive a permutation rep, sum of C[Sn/Sλ].

p-non positive not a perm. rep

p-positive and h-non positive ????

This leaves a gap of what to do for p-positive chV that are not h-positive. Now we address what
to do in such cases.

We have also seen that every permutation representation can be written 1 ↑Sn
H .

3 Linear programming approach

Observe the following inequality:

#{λ ⊢ n} ≤ #{H ≤ Sn}.

This means that there must be linear dependencies among the symmetric functions

{ch 1 ↑Sn
H } ⊆ Λ.

(There are at least the Sλ’s together with cyclic groups.

Example 4. chC[S4/D4] + chC[S4/S31] = chC[S4/S22] + chC[S4/S4]. Thus, there are two
combinatorial bases for this representation:

{labelings of squares} ∪ {
(
[4]

3

)
}

and (
[4]

2

)
∪ {1}

Additional algebraic structure (e.g. a grading) might make one of these more natural than the other.

Remark 1. The Grothendiek ring of permutation representations with respect to addition ⊕ and
multiplication ⊗ is called the Burnside ring B. The linear relation above is an example of a
linear relation in a presentation of B, but there are also multiplicative relations. It would be a bit
cumbersome to write a nontrivial example, but one can find the nontrivial examples by looking at
the kernel of the map from the Burnside ring to the ring of symmetric functions.

Let {Hi}i∈I is a complete list of subgroups of Sn up to conjugacy. Let χ denote the vector of
character values of V .

maximize 1Tx
subject to Ax ≤ χ
and x ≥ 0

where 1 is the all-ones vector, where

A =

 χ1 χ2 . . . χc


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and χi is the vector of character values for C[Sn/Hi]. then xi is the multiplicity of C[Sn/Hi] in V .

Where should x live? Let c = #{Hi}. Well maybe we think Zc
≥0. But if we expand to Qc, we

might find that we get coefficients with a common denominator suggesting that we should some
how find a multiple of our representation. I think Vic will talk about such a case of this happening
this afternoon.

I’ve successfully used this up to S10 because iterating over all the subgroups of S11 up to conjugugacy
takes a while and I haven’t needed to go any higher. The linear program is certainly not the problem,
it is more about computing χi’s.

Example 5. When I plug in V with chV = h22+h4 into my implementation of this linear program,
I get that the solution x corresponds to a copy of D4 and S31. Looking at the symmetric function
tells me that it could also correspond to S22 and S4. So this approach gives us the non-obvious
result.1

4 Extensions?

4.1 Other objective functions

The objective function 1Tx encourages us to maximize the number of Hi we find. If we have reason
to believe that one particular is present, we could change our program to be

maximize wTx
subject to Ax ≤ χ
and x ≥ 0

where we increase wi for the the Hi we expect to occur. For example, if V0 is a copy of the field,
we should either ignore it, or add weight to the trivial representation.

Setting wi = 100 and wj = 1 for Hi = S4 and Hj for every other group gives the solution S22 and
S4. We knew this from the symmetric function, but this is just a proof of concept.

4.2 Other groups

This approach should work for any group, not just the symmetric group.

4.3 Other symmetric functions

Here we were concerned with h-positivity of symmetric functions. But one could also ask about
e-positivity, for example like in the the Stanley-Stembridge conjecture.

1Milage may vary - this is only an experimentation tool.
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