Combinatorics in Kazhdan–Lusztig polynomials of paving matroids

by Trevor K. Karn (U. Minnesota) (joint with George Nasr, Nick Proudfoot, and Lorenzo Vecchi) on Saturday, March 18, 2023

Our story

Euclid stated five postulates for rigorous geometry.

We can drop the fifth and still do geometry.

A partition $\lambda \vdash n$ is a weakly decreasing sequence of nonnegative integers $\lambda_1 \geq \lambda_2 \geq \cdots$ summing to *n*.

A Young tableau T is a filling of a Ferrers diagram by positive integers. T is standard if it is filled by $\{1, 2, ..., n\}$ and increasing in rows and columns. Define f^{λ} as the number of standard tableaux of shape λ .

Proof 1: The <u>Robinson-Schensted bijection</u>:

pairs of standard tableaux of same shape \longleftrightarrow symmetric group \mathfrak{S}_n

Proof 2: Uses that irreducible representations of \mathfrak{S}_n are indexed by $\lambda \vdash n$ and have dimension f^{λ}

Our story

Let v_1, \ldots, v_n be vectors in a vector space V. Then any two bases A, B for the span of v_1, \ldots, v_n satisfy the following requirements:

- 1) There must be at least one basis
- 2) If $a \in A B$ then there is a $b \in B$ with $(A a) \cup b$ a basis.

Definition

A matroid M = (E, B) is a set E with $\emptyset \neq B \subseteq 2^E$ such that if $A, B \in B$ and $a \in A$, there exists $b \in B$ such that

 $(A-a)\cup b\in \mathcal{B}$

Call $\ensuremath{\mathcal{B}}$ the bases of the matroid.

Matroids have the combinatorics of vectors without the "zeroth postulate".

» Vocab

Finite set of vectors	Matroids
Maximally independent sets	Bases ${\cal B}$
Minimally dependent sets	Circuits ${\cal C}$
Dimension of span	Rank
Codimension 1 subspaces	Hyperplanes ${\cal H}$

Definition

 $CH = C \cap H$ is the set of circuit hyperplanes.

A hyperplane H is <u>stressed</u> if every subset of H of size rk(E) is in C. Denote the set of (nontrivial) stressed hyperplanes by SH.

Fact

There is a very large class of matroids called (sparse) paving matroids.

Fact

The matroid Kazhdan–Lusztig polynomial $P_M(t)$ is an interesting polynomial invariant of a matroid M, introduced by Elias, Proudfoot, and Wakefield in 2016.

A skew partition λ/μ is a pair of partitions where the diagram of μ is contained in the diagram of λ

A skew tableau *T* is a filling of a skew diagram by positive integers. *T* is standard if it is filled by $\{1, 2, ..., |\lambda| - |\mu|\}$ and increasing in rows and columns. Define $f^{\lambda/\mu}$ as the number of standard skew tableaux of shape λ/μ .

Theorem (Lee, Nasr, Radcliffe '21)

Let *M* be a rank-*k*, sparse paving matroid with E = [n]and circuit hyperplanes CH. The t^i coefficient in $P_M(t)$ is

$$f^{\lambda/\mu} - |\mathcal{CH}| f^{\lambda'/\mu'}$$

where

$$\lambda = [n - 2i, (k - 2i + 1)^{i}], \mu = [(k - 2i - 1)^{i}]$$
$$\lambda' = [(k - 2i + 1)^{i+1}], \mu' = [k - 2i, (k - 2i - 1)^{i-1}]$$

Theorem (Lee, Nasr, Radcliffe '21)

For a sparse paving matroid *M*, the t^i coefficient in $P_M(t)$ is

Proof 1 (LNR '21): Combinatorial argument with recursion.

Fact

There is a (reducible) \mathfrak{S}_n representation $S^{\lambda/\mu}$ of dimension $f^{\lambda/\mu}$.

Theorem (Lee, Nasr, Radcliffe '21)

For a sparse paving matroid M, the $t^{\,i}$ coefficient in $P_M(t)$ is $f^{\lambda/\mu}-|\mathcal{CH}|f^{\lambda'/\mu'}$

Proof 1 (LNR '21): Combinatorial argument with recursion. Proof 2 (KNPV '22): dim(some $S^{\lambda/\mu}$ coming from *M*).

» Example: Vámos matroid

$$\lambda = [6, 3], \ \mu = [1] \longrightarrow$$

$$|\mathcal{CH}| = 5$$
$$f^{\lambda/\mu} - 5f^{\lambda'/\mu'} = 48 - 15 = 33$$

$$P_V(t) = 1 + 33t$$

» Example: Projective plane over \mathbb{F}_3

$$f^{\lambda/\mu} - 13f^{\lambda'/\mu'} = 65 - 13 * 5 = \neq 0$$

$$P_M(t) = 1$$

Theorem

For a (arbitrary!) paving matroid M, the t^i coefficient in $P_M(t)$ is $f^{\lambda/\mu} - \sum_{H\in \mathcal{SH}} f^{\lambda'(|H|)/\mu'}$

where

$$\lambda = [n - 2i, (k - 2i + 1)^{i}], \mu = [(k - 2i - 1)^{i}]$$
$$\lambda'(h) = [h - 2i + 1, (k - 2i + 1)^{i}], \mu' = [h - 2i, (k - 2i - 1)^{i - 1}]$$

Proof: Our proof of LNR's theorem implies this more general result

THANK YOU!

» References

- Ben Elias, Nicholas Proudfoot, and Max Wakefield, <u>The</u> <u>Kazhdan–Lusztig polynomial of a matroid</u>, Advances in Mathematics **299** (2016), 36–70.
- Luisa Ferroni, George D. Nasr, and Lorenzo Vecchi, <u>Stressed</u> hyperplanes and Kazhdan–Lusztig gamma-positivity for <u>matroids</u>, 2021.
- Katie R. Gedeon, Nicholas Proudfoot, and Benjamin Young, <u>The equivariant Kazhdan–Lusztig polynomial of a matroid</u>, J. Comb. Theory, Ser. A **150** (2017), 267–294.
- Alice L. L. Gao and Matthew H. Y. Xie, <u>The inverse</u> <u>Kazhdan-Lusztig polynomial of a matroid</u>, J. Combin. Theory Ser. B **151** (2021), 375–392. MR 4294228

» References (cont.)

- Alice L. L. Gao, Matthew H.Y. Xie, and Arthur L. B. Yang, <u>The equivariant inverse Kazhdan–Lusztig polynomials of</u> <u>uniform matroids</u>, 2021.
- Trevor Karn, George Nasr, Nicholas Proudfoot, and Lorenzo Vecchi, Equivariant Kazhdan-Lusztig theory of paving matroids, 2022.
- Kyungyong Lee, George D. Nasr, and Jamie Radcliffe, <u>A</u> combinatorial formula for Kazhdan–Lusztig polynomials of sparse paving matroids, Electron. J. Comb. **28** (2021).
- Dillon Mayhew, Mike Newman, Dominic Welsh, and Geoff Whittle, <u>On the asymptotic proportion of connected matroids</u>, European J. Combin. **32** (2011), no. 6, 882–890. MR 2821559

» References (cont.)

- Peter Orlik and Louis Solomon, <u>Combinatorics and topology of complements of hyperplanes</u>, Inventiones mathematicae **56** (1980), no. 2, 167–189 (eng).
- Rudi Pendavingh and Jorn van der Pol, <u>On the number of matroids compared to the number of sparse paving matroids</u>, Electron. J. Combin. **22** (2015), no. 2, Paper 2.51, 17. MR 3367294
- Nicholas Proudfoot, Yuan Xu, and Benjamin Young, <u>The</u> <u>Z-polynomial of a matroid</u>, Electron. J. Comb. **25** (2018), P1.26.