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Euclid stated five postulates for rigorous geometry.

We can drop the fifth and still do geometry.
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A partition λ ⊢ n is a weakly decreasing sequence of nonnegative
integers λ1 ≥ λ2 ≥ · · · summing to n.

Example

λ = (5, 4, 4, 2, 1) ⊢ 16 has Ferrers diagram
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A Young tableau T is a filling of a Ferrers diagram by positive
integers. T is standard if it is filled by {1, 2, . . . , n} and increasing
in rows and columns. Define f λ as the number of standard
tableaux of shape λ.

Example

One of f (5,4,4,2,1) = 549120 standard Young tableaux:

1 6 10 13 16

2 7 11 14

3 8 12 15

4 9

5
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Fact
Fix n. Then ∑

λ⊢n
(f λ)2 = n!

Proof 1:
The Robinson-Schensted bijection:

pairs of standard tableaux of same shape←→ symmetric group Sn

Proof 2:
Uses that irreducible representations of Sn are indexed by λ ⊢ n
and have dimension f λ
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Combinatorial identity with standard Young tableaux

Combinatorial proof Algebraic proof
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Let v1, . . . , vn be vectors in a vector space V. Then any two bases
A,B for the span of v1, . . . vn satisfy the following requirements:

1) There must be at least one basis
2) If a ∈ A− B then there is a b ∈ B with (A− a) ∪ b a basis.

b

a

b

a
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Definition

A matroid M = (E,B) is a set E with ∅ ̸= B ⊆ 2E such
that if A,B ∈ B and a ∈ A, there exists b ∈ B such that

(A− a) ∪ b ∈ B

Call B the bases of the matroid.

Matroids have the combinatorics of vectors without the “zeroth
postulate”.
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» Vocab

Finite set of vectors Matroids
Maximally independent sets Bases B
Minimally dependent sets Circuits C

Dimension of span Rank
Codimension 1 subspaces Hyperplanes H

Definition
CH = C ∩ H is the set of circuit hyperplanes.

A hyperplane H is stressed if every subset of H of size
rk(E) is in C. Denote the set of (nontrivial) stressed
hyperplanes by SH.
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Fact

There is a very large class of matroids called (sparse)
paving matroids.

Fact

The matroid Kazhdan–Lusztig polynomial PM(t) is an
interesting polynomial invariant of a matroid M,
introduced by Elias, Proudfoot, and Wakefield in 2016.
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A skew partition λ/µ is a pair of partitions where the diagram of µ
is contained in the diagram of λ

Example

If λ = (4, 3, 2, 1) and µ = (2, 1) then λ/µ has diagram

mod =
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A skew tableau T is a filling of a skew diagram by positive integers.
T is standard if it is filled by {1, 2, . . . , |λ| − |µ|} and increasing in
rows and columns. Define f λ/µ as the number of standard skew
tableaux of shape λ/µ.

Example

Two of f (4,3,2,1)/(2,1) = 272 standard skew tableaux:

1 2

3 4

5 6

7

3 7

2 6

1 5

4
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Theorem (Lee, Nasr, Radcliffe ’21)

Let M be a rank-k, sparse paving matroid with E = [n]
and circuit hyperplanes CH. The t i coefficient in PM(t)
is

f λ/µ − |CH|f λ′/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′ = [(k− 2i + 1)i+1] , µ′ = [k− 2i, (k− 2i− 1)i−1]
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n− k + 1

i

k − 2i+ 1

i+ 1

k − 2i+ 1
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Theorem (Lee, Nasr, Radcliffe ’21)

For a sparse paving matroid M, the t i coefficient in
PM(t) is

f λ/µ − |CH|f λ′/µ′

Proof 1 (LNR ’21): Combinatorial argument with recursion.
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Fact

There is a (reducible) Sn representation S λ/µ of
dimension f λ/µ.
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Theorem (Lee, Nasr, Radcliffe ’21)

For a sparse paving matroid M, the t i coefficient in
PM(t) is

f λ/µ − |CH|f λ′/µ′

Proof 1 (LNR ’21): Combinatorial argument with recursion.
Proof 2 (KNPV ’22): dim(some Sλ/µ coming from M).
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» Example: Vámos matroid

1

2

3

4
5

6

7

8
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λ = [6, 3], µ = [1] −→

λ′ = [3, 3] , µ′ = [2] −→

|CH| = 5

f λ/µ − 5f λ′/µ′
= 48− 15 = 33

PV(t) = 1 + 33t

[20/28]



A classical story Our story

» Example: Projective plane over F3

λ/µ =

CH = ∅
|SH| = 13

λ′/µ′ =

f λ/µ − 13f λ′/µ′
= 65− 13 ∗ 5 = ̸= 0

PM(t) = 1
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Theorem

For a (arbitrary!) paving matroid M, the ti coefficient in
PM(t) is

f λ/µ −
∑

H∈SH
f λ′(|H| )/µ′

where

λ = [n− 2i, (k− 2i + 1)i] , µ = [(k− 2i− 1)i]

λ′(h) = [h−2i+1, (k−2i+1)i] , µ′ = [h−2i, (k−2i−1)i−1]

Proof: Our proof of LNR’s theorem implies this more general result
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n− k + 1

i

k − 2i+ 1

h− k + 1

i

k − 2i+ 1
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Certain PM(t) in terms of standard skew Young tableaux

Combinatorial proof [LNR21] Algebraic proof [KNPV22]
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THANK YOU!
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