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1. Introduction

When I first read Hatcher’s classic text Algebraic Topology I did not understand the Siefert-van
Kampen theorem at all. When I took MATH 8301 - Manifolds and Topology at the University
of Minnesota, I understood it a little better, but still struggled. Then I started to study for
the Preliminary exam in topology, and so I worked through this example, and it helped me to
understand it better. So I thought I would write up the example and some background to say what
I found confusing in hopes that it might help someone else understand the theorem better. On the
other hand, maybe I’m just a big dummy and others find this theorem less confusing than I did.
At any rate, enjoy!

2. Introducing the example

The topological space we consider can be though of as the union of two partially-overlapping
circles A and B, with a few regions punched out. We’ll put a basepoint x0 in the intersection.
We will also punch out two regions from the interior of the intersection A ∩ B, and we will also
punch out a region from the interior of A−B and B−A. We sketch this in Figure 1. Anyone who
is familiar with the fundamental group will immediately recognize that, since there are four holes
punched out, then π1(X) = 〈x1, x2, x3, x4〉 is the free group on four letters. With this example, it
is not so hard to just compute the fundamental group π1(X). On the other hand thinking of A
and B as a cover of X, we can use this example to understand how π1(A) and π1(B) are related
to π1(X).

We can compute π1(A) quite easily by observing there are three homotopy classes of loops in A,
so π1(A) = 〈a1, a2, a3〉, where we identify the loops drawn in Figure 2 with their representatives in
π1(A). In particular, I took care to draw a1 and a2 so that they are not contained in C. Of course,
they are homotopic in A (and in X) to loops which do lie in C, but I want to make the distinction
between loops in A and loops in C. Since a1, a2 are not contained in C, there is no risk of confusing
them for loops in C.

We can reflect everything in this situation symmetrically about the middle to find loops b1, b2, b3
in B such that - in X - we have b1 ∼ a1 and b2 ∼ a2, but then b3 loops around the punched out
region which is contained in B −A. From this we see by symmetry that π1(B) = 〈b1, b2, b3〉.

The final piece of the puzzle which we’ll focus on is the space C = A∩B. There are two distinct
(nonidentity) homotopy classes of loops, shown in figure Figure 3. Thus we see that π1(C) = 〈c1, c2〉.

I would like to thank Tomas Bañuelos, Casey Garner, and Jacob Hegna for helpful conversations during the writing
of this note.
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Figure 1. The main topological space X = A ∪B we consider
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A C = A ∩B

Figure 2. Computing the fundamental group of A

3. Statement of the theorem

There are a few different ways to think of the statement of the theorem (for example in terms
of pushouts and pull backs), but for the sake of this example we’ll look at the way that Hatcher
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C = A ∩B

Figure 3. Computing the fundamental group of C

explains it. First, Hatcher defines inclusion map iαβ : π1(Aα∩Aβ)→ π1(Aα) where you take a loop
in Aα∩Aβ and consider it as a loop in Aα. Then he extends the inclusion map jα : π1(Aα)→ π1(X)
to Φ : ∗απ1(Aα)→ π1(X). The point of this map is to think of loops in π1(Aα) as loops in X, but
doing it for every loop in every component Aα The exact statement in Hatcher is given below.

Theorem (Siefert-van Kampen). If X is the union of path-connected open sets Aα each containing
the basepoint x0, and if each intersection Aα ∩ Aβ is path connected, then the homomorphism
Φ : ∗απ1(Aα)→ π1(X) is surjective. If, in addition, each intersection Aα∩Aβ∩Aγ is path connected,
then the kernel of Φ is the normal subgroup N generated by all elements of the form iαβ(w)iβα(w)−1

for w ∈ π1(Aα ∩Aβ) and hence Φ induces an isomorphism π1(X) ∼= ∗απ1(Aα)/N .

The biggest confusion I had with understanding this theorem was understanding N , so when we
unpack the statement of the theorem, I’m going to focus on understanding N .

4. Understanding N

Hatcher states everything pretty generally, so let’s think about the theorem in terms of the picture
we have built up for X. Everything we’ve defined so far is drawn in Figure 4. Also remember that
we’ve already determined that π1(A) = 〈a1, a2, a3〉 and π1(B) = 〈b1, b2, b3〉 (definitely abusing
notation).

The end goal of this whole theorem is to look at the small parts of the space and then glue their
fundamental groups together in a sensible algebraic way that respects the way they are topologically
glued together.

If we focus on A, then a1 ∼ c1 6∼ b1 (indeed b1 is not even a loop in A). The same shift in
perspective tells us that if we focus on B, then b1 ∼ c1 6∼ a1. But note that in X we have the
homotopy equivalences a1 ∼ b1 ∼ c1. If we want to glue π1(A) and π1(B) together in a way that
respects the topology, we need to mash together a1 and b1 into the same equivalence class.

Define the inclusion map iAB : π1(C) → π1(A) and iBA : π1(C) → π1(B). The map is the
composition of the inclusion of C into A (respectively B) and then quotienting out by homotopy
equivalence (which is the usual inclusion homormorphism). Then by the homotopy equivalences
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Figure 4. The whole picture of X

in the last paragraph we see that cn
iAB7→ an and cn

iBA7→ bn. Then we also have the inclusion map
from A into X which induces the inclusion jA : π1(A)→ π1(X) and similarly jB : π1(B)→ π1(X).
Since in X we have a1 ∼ b1 ∼ c1, then jA(a1) = jB(b1), otherwise j could not even be an inclusion.

Since everything is an inclusion, then the following diagram must commute:

π1(A)

π1(C) π1(X)

π1(B)

jAiAB

iBA jB

At this point it might be instructive to see what happens in this digram. Let w1 = c91c
4
2c

−4
1 c32c

−1
1 ∈

π1(C). Now let us trace what happens to w as it goes through the diagram. First compute:

iAB(w) = a91a
4
2a

−4
1 a32a

−1
1

iBA(w) = b91b
4
2b

−4
1 b32b

−1
1

Then letting x1 be the homotopy equivalence class containing a1, b1, c1 and x2 be the homotopy
class of a2, b2, c2, we see
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jA(iAB(w)) = x91x
4
2x

−4
1 x32x

−1
1

jB(iBA(w)) = x91x
4
2x

−4
1 x32x

−1
1

So the first thing we would want to do to compute π1(X) from π1(A), π1(B), π1(C) is just consider
the free product π1(A) ∗ π1(B) = 〈a1, a2, a3, b1, b2, b3〉. Let w2 = b43a

3
1b

−1
2 a2a

4
3. Thinking of w2 as

tracing the path of loops, we first go around b3 four times, then three times araound a1, then
backwards once around b2, forwards once around a2, and then four times around a3.

But wait! Did you catch the problem? Inside of X we went backwards once around b2 and then
immediately after that we went forwards once around a2. This is no problem if we are working
inside of A or B, but when we glue them together to be in X, we need a2 and b2 to be the same
element.

Algebraically, the way to do that is to mod out by a2b
−1
2 and b2a

−1
2 and their inverses - that

is, by the group 〈a2b−1
2 , b2a

−1
2 〉. Supposing we mod out by those two elements, then we see that

w2 = b3a
3
1a

4
3.

What is the fundamental reason that we modded out by a2b
−1
2 ? Because a2 and b2 are the same

class x2 in X. Now look at the loop in the intersection C which corresponds to x2. We know it is
c2. But what we didn’t see in the example of w2 was that a1 and b1 are the same loop in X. This
corresponds to c2.

The problem with just taking the free product lies exactly in the intersection. Modding out
by 〈iAB(w)i−1

BA(w), iBA(w)i−1
AB(w) : w ∈ π1(C)〉 does a few things. First, it mushes together loops

which represent the same loop in the whole space. The mechanism which does that is iABi
−1
BA. But

we can’t do that for every pair of loops, so how do we limit which loops contribute to this? Well it
has to be loops that are in both A and B, which is to say the loops in C.

5. Conclusion

I think it is easy to get bogged down in notation in understanding the Siefert-van Kampen
theorem. I think it becomes a lot clearer with the perspective of following what happens to a given
element of π1(A) ∗ π1(B) when you try to think of it as lying in π1(X). Then since the inclusion
map is really the only one that makes sense, we should keep track of how each element of π1(A) and
π1(B) are included into π1(X). Of course, the issues arise with loops which are homotopic to loops
in the intersection. For example even though our a1 and b1 were not in C, they were homotopic to
c1. We use π1(C), or more generally the fundamental group of the intersections to keep track of
such loops, and mod out by a relation which forces them to be the same.
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